

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/nonius/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/nonius/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

vim: ft=jekyll tw=120:

title: Nonius - Authoring benchmarks
layout: default

Authoring benchmarks

Writing benchmarks is not easy. Nonius simplifies certain aspects but you’ll
always need to take care about various aspects. Understanding a few things about
the way nonius runs your code will be very helpful when writing your benchmarks.

First off, let’s go over some terminology that will be used throughout this
guide.

	User code: user code is the code that the user provides to be measured.

	Run: one run is one execution of the user code.

	Sample: one sample is one data point obtained by measuring the time it takes
to perform a certain number of runs. One sample can consist of more than one
run if the clock available does not have enough resolution to accurately
measure a single run. All samples for a given benchmark execution are obtained
with the same number of runs.

Execution procedure

Now I can explain how a benchmark is executed in nonius. There are three main
steps, though the first does not need to be repeated for every benchmark.

	Environmental probe: before any benchmarks can be executed, the clock’s
resolution is estimated. A few other environmental artifacts are also estimated
at this point, like the cost of calling the clock function, but they almost
never have any impact in the results.

	Estimation: the user code is executed a few times to obtain an estimate of
the amount of runs that should be in each sample. This also has the potential
effect of bringing relevant code and data into the caches before the actual
measurement starts.

	Measurement: all the samples are collected sequentially by performing the
number of runs estimated in the previous step for each sample.

This already gives us one important rule for writing benchmarks for nonius: the
benchmarks must be repeatable. The user code will be executed several times, and
the number of times it will be executed during the estimation step cannot be
known beforehand since it depends on the time it takes to execute the code.
User code that cannot be executed repeatedly will lead to bogus results or
crashes.

Benchmark specification

Nonius includes a simple declarative interface to specify benchmarks for
execution. This declarative interface consists of the NONIUS_BENCHMARK macro. This macro
expands to some machinery that registers the benchmark in a global registry that
can be accessed by the standard runner.

NONIUS_BENCHMARK takes two parameters: a string literal with a unique name to
identify the benchmark, and a callable object with the actual code. This
callable object is usually provided as a lambda expression.

There are two types of callable objects that can be provided. The simplest ones
take no arguments and just run the user code that needs to be measured. However,
if the callable can be called with a nonius::chronometer argument, some
advanced features are available. The simple callables are invoked once per run,
while the advanced callables are invoked exactly twice: once during the
estimation phase, and another time during the execution phase.

{% highlight cpp %}
NONIUS_BENCHMARK(“simple”, [] { return long_computation(); });

NONIUS_BENCHMARK(“advanced”, [](nonius::chronometer meter) {
set_up();
meter.measure([] { return long_computation(); });
});
{% endhighlight %}

These advanced callables no longer consist entirely of user code to be measured.
In these cases, the code to be measured is provided via the
nonius::chronometer::measure member function. This allows you to set up any
kind of state that might be required for the benchmark but is not to be included
in the measurements, like making a vector of random integers to feed to a
sorting algorithm.

A single call to nonius::chronometer::measure performs the actual measurements
by invoking the callable object passed in as many times as necessary. Anything
that needs to be done outside the measurement can be done outside the call to
measure.

The callable object passed in to measure can optionally accept an int
parameter.

{% highlight cpp %}
meter.measure([](int i) { return long_computation(i); });
{% endhighlight %}

If it accepts an int parameter, the sequence number of each run will be passed
in, starting with 0. This is useful if you want to measure some mutating code,
for example. The number of runs can be known beforehand by calling
nonius::chronometer::runs; with this one can set up a different instance to be
mutated by each run.

{% highlight cpp %}
std::vector<std::string> v(meter.runs());
std::fill(v.begin(), v.end(), test_string());
meter.measure([&v](int i) { in_place_escape(v[i]); });
{% endhighlight %}

Note that it is not possible to simply use the same instance for different runs
and resetting it between each run since that would pollute the measurements with
the resetting code.

All of these tools give you a lot mileage, but there are two things that still
need special handling: constructors and destructors. The problem is that if you
use automatic objects they get destroyed by the end of the scope, so you end up
measuring the time for construction and destruction together. And if you use
dynamic allocation instead, you end up including the time to allocate memory in
the measurements.

To solve this conundrum, nonius provides class templates that let you manually
construct and destroy objects without dynamic allocation and in a way that lets
you measure construction and destruction separately.

{% highlight cpp %}
NONIUS_BENCHMARK(“construct”, [](nonius::chronometer meter)
{
std::vector<nonius::storage_for<std::string>> storage(meter.runs());
meter.measure([&](int i) { storage[i].construct(“thing”); });
})

NONIUS_BENCHMARK(“destroy”, [](nonius::chronometer meter)
{
std::vector<nonius::destructable_object<std::string>> storage(meter.runs());
for(auto&& o : storage)
o.construct(“thing”);
meter.measure([&](int i) { storage[i].destruct(); });
})
{% endhighlight %}

nonius::storage_for<T> objects are just pieces of raw storage suitable for T
objects. You can use the nonius::storage_for::construct member function to call a constructor and
create an object in that storage. So if you want to measure the time it takes
for a certain constructor to run, you can just measure the time it takes to run
this function.

When the lifetime of a nonius::storage_for<T> object ends, if an actual object was
constructed there it will be automatically destroyed, so nothing leaks.

If you want to measure a destructor, though, we need to use
nonius::destructable_object<T>. These objects are similar to
nonius::storage_for<T> in that construction of the T object is manual, but
it does not destroy anything automatically. Instead, you are required to call
the nonius::destructable_object::destruct member function, which is what you
can use to measure the destruction time.

The optimizer

Sometimes the optimizer will optimize away the very code that you want to
measure. There are several ways to use results that will prevent the optimiser
from removing them. You can use the volatile keyword, or you can output the
value to standard output or to a file, both of which force the program to
actually generate the value somehow.

Nonius adds a third option. The values returned by any function provided as user
code are guaranteed to be evaluated and not optimised out. This means that if
your user code consists of computing a certain value, you don’t need to bother
with using volatile or forcing output. Just return it from the function.
That helps with keeping the code in a natural fashion.

Here’s an example:

{% highlight cpp %}
// may measure nothing at all by skipping the long calculation since its
// result is not used
NONIUS_BENCHMARK(“no return”, [] { long_calculation(); })

// the result of long_calculation() is guaranteed to be computed somehow
NONIUS_BENCHMARK(“with return”, [] { return long_calculation(); })
{% endhighlight %}

However, there’s no other form of control over the optimizer whatsoever. It is
up to you to write a benchmark that actually measures what you want and doesn’t
just measure the time to do a whole bunch of nothing.

To sum up, there are two simple rules: whatever you would do in handwritten code
to control optimization still works in nonius; and nonius makes return values
from user code into observable effects that can’t be optimized away.

vim: ft=jekyll tw=120:

title: Nonius - Contributor guide
layout: default

Contributor guide

Contributions to nonius are very welcome, whether by filing bugs, suggesting features, contributing code, or helping
with documentation. This page provides some info that might be helpful when doing so.

Reporting bugs and suggesting features

If you find a bug in nonius, please open an issue in the issue tracker [https://github.com/rmartinho/nonius/issues]. Provide as much detail as you can. Suggested
features also go on the issue tracker.

Building

To build the nonius single-header file, the examples, and the tests, you need to have a Python installation and the
ninja [https://ninja-build.org] build tool.

Start by running the boostrap script from the repository root:

{% highlight console %}
$ tools/bootstrap.py
{% endhighlight %}

This script accepts a few flags that you can checkout with --help.

After running the bootstrapper you can use ninja to perform build tasks.

{% highlight console %}
$ # generate the single-header file in dist/nonius.h++
$ ninja header

$ # build the documentation in dist/doc/ (this requires jekyll and pygments to be installed)
$ ninja docs

$ # build the examples in bin/examples/
$ ninja examples

$ # build the test runner in bin/test
$ ninja test
{% endhighlight %}

Currently, if you create new files, ninja won’t know about them until the bootstrap script is re-run. You can force this
by simply touching the bootstrap script before running ninja. It will then pick up all the new files.

{% highlight console %}
$ touch tools/bootstrap.py
$ ninja examples
[1/1] BOOTSTRAP
[1/2] C++ examples/example6.c++
{% endhighlight %}

Writing code

Please try to keep coding style consistent throughout the repository.

All macros starts with NONIUS_ for namespacing purposes, and everything else goes inside the nonius namespace.
Please hide implementation details in the nonius::detail namespace.

Nonius should work with GCC, clang, and Visual C++. The versions supported are as follows:

	for GCC, the latest minor and patch of each of the last three major versions (as of August 12, 2016, that means
versions 4.9.4, 5.4, and 6.1 are supported);

	for clang, the latest patch of each of the last three minor versions, according to the LLVM project versioning scheme,
not according to Apple’s (as of August 12, 2016, that means versions 3.6.2, 3.7.1, and 3.8.1 are supported);

	for Visual C++ the latest minor and patch of each of the last three major versions, starting with Visual Studio 2015
(as of August 12, 2016, that means only the compiler—

cl.exe, not the IDE—

version 19.00.24213.1 is
supported);

C++ feature use should be limited in such a way that all these versions are supported.

Currently nonius depends on Boost for some functionality. The versions of Boost that are supported are the latest
patches of each of the last three minor versions (as of August 12, 2016, that means versions 1.59.0, 1.60.0, and 1.61.0
are supported).

Branches, tags, releases

If you want to contribute code, make a pull request against the devel branch in the main repository [https://github.com/rmartinho/nonius]. Once it has
been reviewed and approved it will be merged. The devel branch tracks all code that is pending for the next release.

Once properly tested on all supported platforms, the devel branch is merged into the stable branch, tagged with a
release number, and a new release entry is added on GitHub.

Writing documentation

Documentation is kept in the doc/ folder, in the form of a Jekyll website.

All interfaces intended for public consumption should be described in the documentation. Currently there is no
reference-style documentation as the number of interfaces exposed is low; descriptive prose is preferred.

Pull requests that introduce new features will not be merged until the documentation is written. This ensures that on
every merge to the devel branch, the documentation in the repo reflects the current state of the code.

Documentation is automatically picked up every day and served at nonius.io.

	documentation for the latest release is served from https://nonius.io/;

	documentation for older releases are served from https://nonius.io/vM.m/, where M is the major number and m is the minor number (e.g.
https://nonius.io/v1.1/);

	documentation for the latest devel branch is served from https://nonius.io/devel/;

Licensing

rmf [https://rmf.io/robot]: When I started nonius, I put the code in the public domain using CC0 [http://creativecommons.org/publicdomain/zero/1.0/]. I would like it to continue as such,
so I ask that you license your contributions under CC0 as well. Files in the repository have a notice stating that
nonius is dedicated to the public domain worldwide, and that the authors are all the contributors.

vim: ft=jekyll tw=120:

title: Nonius - Advanced features
layout: default

Advanced features

Custom entry point

Nonius comes with a default main function that drives the benchmarking process. However, sometimes it might be necessary
to write your own main function. In order to do this, your code should not define NONIUS_RUNNER and have a main
function instead. That function can then invoke the default benchmark driver by calling nonius::main or nonius::go.

{% highlight cpp %}
namespace nonius {
using default_clock = /unspecified/;

int main(int argc, char** argv);

template <typename Clock = default_clock, typename Iterator>
void go(configuration cfg, Iterator first, Iterator last, reporter& rep);

}
{% endhighlight %}

nonius::main is exactly what you would get by defining NONIUS_RUNNER. This is useful if you want to filter
command-line arguments, initialize something before nonius runs, or do something afterwards.

nonius::go only runs the benchmarks, without any of the housekeeping tasks like parsing command-line arguments. The
function takes four parameters: a configuration object that defines the parameters of the run, a pair of iterators for
benchmark objects, and the reporter to be used by the run.

vim: ft=jekyll tw=120:

title: Nonius
layout: default

Page not found

The page you requested cannot be found.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

